Germ Warfare in a Microbial Mat Community: CRISPRs Provide Insights into the Co-Evolution of Host and Viral Genomes
Open Access
- 9 January 2009
- journal article
- research article
- Published by Public Library of Science (PLoS) in PLOS ONE
- Vol. 4 (1) , e4169
- https://doi.org/10.1371/journal.pone.0004169
Abstract
CRISPR arrays and associated cas genes are widespread in bacteria and archaea and confer acquired resistance to viruses. To examine viral immunity in the context of naturally evolving microbial populations we analyzed genomic data from two thermophilic Synechococcus isolates (Syn OS-A and Syn OS-B′) as well as a prokaryotic metagenome and viral metagenome derived from microbial mats in hotsprings at Yellowstone National Park. Two distinct CRISPR types, distinguished by the repeat sequence, are found in both the Syn OS-A and Syn OS-B′ genomes. The genome of Syn OS-A contains a third CRISPR type with a distinct repeat sequence, which is not found in Syn OS-B′, but appears to be shared with other microorganisms that inhabit the mat. The CRISPR repeats identified in the microbial metagenome are highly conserved, while the spacer sequences (hereafter referred to as “viritopes” to emphasize their critical role in viral immunity) were mostly unique and had no high identity matches when searched against GenBank. Searching the viritopes against the viral metagenome, however, yielded several matches with high similarity some of which were within a gene identified as a likely viral lysozyme/lysin protein. Analysis of viral metagenome sequences corresponding to this lysozyme/lysin protein revealed several mutations all of which translate into silent or conservative mutations which are unlikely to affect protein function, but may help the virus evade the host CRISPR resistance mechanism. These results demonstrate the varied challenges presented by a natural virus population, and support the notion that the CRISPR/viritope system must be able to adapt quickly to provide host immunity. The ability of metagenomics to track population-level variation in viritope sequences allows for a culture-independent method for evaluating the fast co-evolution of host and viral genomes and its consequence on the structuring of complex microbial communities.Keywords
This publication has 42 references indexed in Scilit:
- Assembly of Viral Metagenomes from Yellowstone Hot SpringsApplied and Environmental Microbiology, 2008
- A Novel Family of Sequence-specific Endoribonucleases Associated with the Clustered Regularly Interspaced Short Palindromic RepeatsJournal of Biological Chemistry, 2008
- Virus Population Dynamics and Acquired Virus Resistance in Natural Microbial CommunitiesScience, 2008
- Diversity, Activity, and Evolution of CRISPR Loci in Streptococcus thermophilusJournal of Bacteriology, 2008
- Phage Response to CRISPR-Encoded Resistance in Streptococcus thermophilusJournal of Bacteriology, 2008
- CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeatsNucleic Acids Research, 2007
- Evolutionary conservation of sequence and secondary structures in CRISPR repeatsGenome Biology, 2007
- The Repetitive DNA Elements Called CRISPRs and Their Associated Genes: Evidence of Horizontal Transfer Among ProkaryotesJournal of Molecular Evolution, 2006
- A Guild of 45 CRISPR-Associated (Cas) Protein Families and Multiple CRISPR/Cas Subtypes Exist in Prokaryotic GenomesPLoS Computational Biology, 2005
- MUSCLE: multiple sequence alignment with high accuracy and high throughputNucleic Acids Research, 2004