Effects of oxygen on the electron transport chain of photosynthesis

Abstract
Oxygen was taken up by both intact and broken chloroplasts when catalase was posioned. In confirmation of other work we found that oxygen enters the electron transport chain of isolated chloroplasts by oxidizing the primary photoreductant of system I. In isolated intact chloroplasts this reaction proceeds in addition to oxygen evolution by PGA reduction. The reductant produced by photosystem II does not react with oxygen at a significant rate. In normal leaves oxygen depresses chlorophyll fluorescence. However, this depression does not take place in DCMU poisoned leaves or in a mutant having a nonfunctional photosystem II; furthermore, another mutant with a weakly functioning photosystem I gave only a very small fluorescence depression with oxygen. This shows that the site of interaction of oxygen is at the reducing end of the electron transport chain. This view is supported by the extent of the fluorescence depression in leaves as a function of oxygen concentration which is very similar to the oxygen dependence of oxygen uptake by isolated chloroplasts. An oxygen requirement of isolated intact chloroplasts reducing PGA and nitrate was indicated by lower reaction rates and faster decay of activity under nitrogen than under air.