Single‐nucleotide polymorphism analysis using fluorescence resonance energy transfer between DNA‐labeling fluorophore, fluorescein isothiocyanate, and DNA intercalator, POPO‐3, on bacterial magnetic particles

Abstract
To develop an analytical system for single‐nucleotide polymorphisms (SNPs), the fluorescence resonance energy transfer (FRET) technique was employed on a bacterial magnetic particle (BMP) surface. A combination of fluorescein isothiocyanate (FITC; excitation 490 nm/emission 520 nm) labeled at the 5′ end of DNA and an intercalating compound (POPO‐3, excitation 534 nm/emission 570 nm) was used to avoid the interference from light scattering caused by nanoparticles. After hybridization between target DNA immobilized onto BMPs and FITC‐labeled probes, fluorescence from POPO‐3, which was excited by the energy from the FITC, was detected. The major homozygous (ALDH2*1), heterozygous (ALDH2*1/*2), and minor homozygous (ALDH2*2) genotypes in the blood samples were discriminated by this method. The assay described herein allows for a simple and rapid SNP analysis using a fully automated system. © 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 84: 96–102, 2003.