Differential Transduction Mechanisms Underlying NaCl- and KCl-induced Responses in Mouse Taste Cells
Open Access
- 1 January 2001
- journal article
- research article
- Published by Oxford University Press (OUP) in Chemical Senses
- Vol. 26 (1) , 67-77
- https://doi.org/10.1093/chemse/26.1.67
Abstract
The transduction mechanism of salt-induced responses of mouse taste cells was investigated using the patch clamp and the local stimulation techniques under quasi-natural conditions. Apically applied NaCl induced a voltage-independent current, which was partially suppressed by amiloride and Cd2+. In contrast, apically applied 0.5 M KCl induced an inwardly rectifying current (KCl-induced Iir). The KCl-induced Iir was unaffected by amiloride. The Iir was suppressed not only by external Ba2+ and Cs+, but also by a Cl– channel blocker, niflumic acid. The Er of the KCl-induced response was independent of the apical ionic concentration, but rather was close to the equilibrium potential of Cl– (ECl) at the basolateral membrane. The KCl-induced Iir displayed a fast run-down under the conditions of the conventional whole cell clamp method, but not under the perforated patch conditions. Immunohistochemical localization of an inwardly rectifying Cl– channel protein, ClC-2, was observed in taste bud cells of the fungiform papillae. It is concluded that the transduction mechanism of NaCl-induced responses is completely different from that of KCl-induced responses in mouse taste cells.Keywords
This publication has 0 references indexed in Scilit: