Imaging Peripheral Benzodiazepine Receptors in Brain Tumors in Rats: In vitro Binding Characteristics

Abstract
Peripheral benzodiazepine binding constants for transplanted RG-2 gliomas and HK and LK Walker 256 tumors (metastatic breast carcinoma) were determined in Wistar rats using autoradiography. In addition, Kd and Bmax parameters for peripheral benzodiazepine receptors on RG-2 tumors were directly visualized using digital image analysis of autoradiograms. High specific binding of [3H]PK11195, a selective peripheral benzodiazepine ligand, had excellent topographical correlation to areas of histologically verified tumor. Scatchard analysis suggested a single class of peripheral binding sites with similar binding affinities in RG-2 and LK Walker 256 tumors and normal cortex. Bmax was 20-fold greater in glial tumors and 11.6- and 10.6-fold greater in LK and HK Walker 256 tumors, respectively, compared to normal cortex. The location of metastatic tumors, either intracerebrally or subcutaneously, did not effect their Kd or Bmax values. Kd and Bmax values for RG-2 tumors were similar whether determined densitometrically or by direct visualization with image analysis. Binding parameters within normal brain were difficult to visualize by image analysis due to the low level of specific binding. The ability to label specifically intracerebral tumor cells and to characterize the binding parameters shown in this study suggest that peripheral benzodiazepine receptor ligands could be utilized by PET to analyze directly a variety of tumors in humans.