Prostaglandin E2 increases cyclic AMP and inhibits endothelin‐1 production/secretion by guinea‐pig tracheal epithelial cells through EP4 receptors

Abstract
Prostaglandin E(2) (PGE(2)) increased adenosine 3' : 5'-cyclic monophosphate (cyclic AMP) formation in tracheal epithelial cells and concomitantly decreased the production/secretion of immunoreactive endothelin (irET). Naturally occurring prostanoids and selective and non-selective EP receptor agonists showed the following rank order of potency in stimulating cyclic AMP generation by epithelial cells: PGE(2) (EP-selective)>16,16-dimethyl PGE(2) (EP-selective)>11-deoxy PGE(2) (EP-selective)>>>iloprost (IP/EP(1)/EP(3)-selective), butaprost (EP(2)-selective), PGD(2) (DP-selective), PGF(2alpha) (FP-selective). The lack of responsiveness of the latter prostanoids indicated that the prostanoid receptor present in these cells is not of the DP, FP, IP, EP(1), EP(2) or EP(3) subtype. Pre-incubating the cells with the selective TP/EP(4)-receptor antagonists AH23848B and AH22921X antagonized the PGE(2)-evoked cyclic AMP generation. This suggested that EP(4) receptors mediate PGE(2) effects. However, in addition to any antagonistic effects at EP(4)-receptors, both compounds, to a different extent, modified cyclic AMP metabolism. The selective EP(1), DP and EP(2) receptor antagonist (AH6809) failed to inhibit PGE(2)-evoked cyclic AMP generation which confirmed that the EP(2) receptor subtype did not contribute to the change in cyclic AMP formation in these cells. The PGE(2)-induced inhibition of irET production by guinea-pig tracheal epithelial cells was due to cyclic AMP generation and activation of the cyclic AMP-dependent protein kinase since this effect was reverted by the cyclic AMP antagonist Rp-cAMPS. These results provide the first evidence supporting the existence of a functional prostaglandin E(2) receptor that shares the pharmacological features of the EP(4)-receptor subtype in guinea-pig tracheal epithelial cells. These receptors modulate cyclic AMP formation as well as ET-1 production/secretion in these cells.