Maximum Likelihood for Generalized Linear Models with Nested Random Effects via High-Order, Multivariate Laplace Approximation

Abstract
Nested random effects models are often used to represent similar processes occurring in each of many clusters. Suppose that, given cluster-specific random effects b, the data y are distributed according to f(y|b, Θ), while b follows a density p(b|Θ). Likelihood inference requires maximization of ∫ f(y|b, Θ)p(bdb with respect to Θ. Evaluation of this integral often proves difficult, making likelihood inference difficult to obtain. We propose a multivariate Taylor series approximation of the log of the integrand that can be made as accurate as desired if the integrand and all its partial derivatives with respect to b are continuous in the neighborhood of the posterior mode of b|Θ,y. We then apply a Laplace approximation to the integral and maximize the approximate integrated likelihood via Fisher scoring. We develop computational formulas that implement this approach for two-level generalized linear models with canonical link and multivariate normal random effects. A comparison with approximations based on penalized quasi-likelihood, Gauss—Hermite quadrature, and adaptive Gauss-Hermite quadrature reveals that, for the hierarchical logistic regression model under the simulated conditions, the sixth-order Laplace approach is remarkably accurate and computationally fast.

This publication has 45 references indexed in Scilit: