Striding-Athabasca mylonite zone: Complex Archean deep-crustal deformation in the East Athabasca mylonite triangle, northern Saskatchewan

Abstract
The geophysically defined Snowbird tectonic zone is manifested in northernmost Saskatchewan as a deep-crustal, multistage mylonitic structure, the East Athabasca mylonite triangle. The triangle, located at the northeastern apex of a stiff, crustal-scale "lozenge," is composed of mid-Archean annealed mylonites and late Archean ribbon mylonites, formed during two granulite facies events (850–1000 °C, 1.0 GPa). The flow pattern in the mylonites is geometrically and kinematically complex, and corresponds to that expected adjacent to the apex of a stiff elliptical volume subjected to subhorizontal regional extension parallel to its principal axis. The late Archean mylonites are divided into an upper structural deck, entirely occupied by a dip-slip shear zone, and an underlying lower deck. The latter is divided into two upright conjugate strike-slip shear zones, separated by a low-strain septum, which deformed by progressive coaxial flow. The flow pattern in the mid-Archean mylonites is compatible with that of the late Archean mylonites, and suggests that the crustal-scale lozenge influenced deformation since the mid-Archean. In the interval ca. 2.62–2.60 Ga, deformation in the upper and lower decks evolved from a granulite facies pervasive regime to a more localized amphibolite facies regime. With further cooling, deformation was localized within very narrow greenschist mylonitic faults at the lateral limits of the lower deck. By the late Archean, the East Athabasca mylonite triangle was part of a deep-crustal, intracontinental shear zone. This segment of the Snowbird tectonic zone was not the site of an Early Proterozoic suture or orogen.

This publication has 0 references indexed in Scilit: