Abstract
Animal camouflage patterns may exploit, and thus give an insight into, visual processing mechanisms. In one common type of camouflage the borders of the coloured patterns are enhanced by high contrast lines. This type of camouflage is seen on many frogs and we use it as the basis for speculating about vision in a small, frog-eating snake. It is argued that a simple categorization of intensity profiles, such as that invoked by a mechanism that detects phase-congruence, occurs at an early stage of snake vision. We show that edge-detectors using a phase-congruence strategy will be unable to distinguish between 'natural' step-edges and the enhanced border profiles commonly seen on cryptic animals, and that the camouflage will be effective over a wide range of spatial scales.