Complex Faraday effect in multilayer structures

Abstract
After the Mueller matrix of a medium exhibiting a complex Faraday effect is derived, a procedure is developed that permits computation of optical transmission, Faraday rotation, and magnetic circular dichroism (MCD) in planar layered structures when all internal reflections are taken into account. The structures are represented by Mueller matrices and have, therefore, a depolarizing effect on an incident wave of other than circular polarization. The formulas for some common experimental arrangements including ellipticity and azimuth modulation techniques are given and are then applied to three special cases, i.e., a single absorbing plate, a single absorbing layer on a nonabsorbing substrate, and two identical absorbing layers on either side of a nonabsorbing substrate. For magnetic garnet films on nonabsorbing garnet substrates in the region of low absorption, the formulas predict an increase of MCD because of multiple reflections of the order of a few percent. On thin sections of magnetic semiconductors the effect can approach 15%, provided that the absorption is low.

This publication has 12 references indexed in Scilit: