Predicting intense field laser ionization probabilities: The application to C2Hn species

Abstract
A structure-based tunneling mechanism developed to predict the ionization of molecules subjected to intense, ultrafast irradiation is tested on the series of C2 hydrocarbons: acetylene, ethylene, and ethane. Relative ionization probabilities (1, 4.1, and 8.7 for ethane, acetylene, and ethylene, respectively) are measured upon excitation with 780 nm, 125 fs pulses of 6×1013 W cm−2 and compared to predictions of the model (1, 4.1, and 7.9 for ethane, acetylene, and ethylene, respectively). Ionization probabilities determined via the ADK (Ammosov, Delone, and Krainov) model for atomic ionization (1, 2.7, and 13.1 for ethane, acetylene, and ethylene, respectively) are shown to be near those of the structure-based model.