Summation of dynamic transfer characteristics of left and right carotid sinus baroreflexes in rabbits

Abstract
Although interactions among parallel negative-feedback baroreflex systems have been extensively investigated with respect to their steady-state responses, the dynamic interactions remain unknown. In anesthetized, vagotomized, and aortic-denervated rabbits, we perturbed isolated intracarotid sinus pressure (CSP) unilaterally or bilaterally around the physiological operating pressure according to binary white noise. The neural arc transfer function from CSP to cardiac sympathetic nerve activity (SNA) and the peripheral arc transfer function from SNA to aortic pressure were estimated. The gain values of the neural arc at 0.01 Hz estimated by the left (L) and right (R) CSP perturbations were 0.94 ± 0.31 and 0.96 ± 0.25, respectively. The gain value increased to 2.17 ± 0.97 during the bilateral identical CSP perturbation and was not significantly different from L + R. The phase values of the neural arc did not differ among protocols. No significant differences were observed in the peripheral arc transfer functions among protocols. We conclude that summation of the dynamic transfer characteristics of the bilateral carotid sinus baroreflexes around the physiological operating pressure approximates simple addition.