Exact low-rank matrix completion via convex optimization

Abstract
Suppose that one observes an incomplete subset of entries selected uniformly at random from a low-rank matrix. When is it possible to complete the matrix and recover the entries that have not been seen? We show that in very general settings, one can perfectly recover all of the missing entries from a sufficiently large random subset by solving a convex programming problem. This program finds the matrix with the minimum nuclear norm agreeing with the observed entries. The techniques used in this analysis draw upon parallels in the field of compressed sensing, demonstrating that objects other than signals and images can be perfectly reconstructed from very limited information.

This publication has 15 references indexed in Scilit: