Binding of matrix attachment regions to lamin polymers involves single-stranded regions and the minor groove.
Open Access
- 1 September 1994
- journal article
- Published by Taylor & Francis in Molecular and Cellular Biology
- Vol. 14 (9) , 6297-6305
- https://doi.org/10.1128/mcb.14.9.6297
Abstract
Chromatin in eukaryotic nuclei is thought to be partitioned into functional loop domains that are generated by the binding of defined DNA sequences, named MARs (matrix attachment regions), to the nuclear matrix. We have previously identified B-type lamins as MAR-binding matrix components (M. E. E. Ludérus, A. de Graaf, E. Mattia, J. L. den Blaauwen, M. A. Grande, L. de Jong, and R. van Driel, Cell 70:949-959, 1992). Here we show that A-type lamins and the structurally related proteins desmin and NuMA also specifically bind MARs in vitro. We studied the interaction between MARs and lamin polymers in molecular detail and found that the interaction is saturable, of high affinity, and evolutionarily conserved. Competition studies revealed the existence of two different types of interaction related to different structural features of MARs: one involving the minor groove of double-stranded MAR DNA and one involving single-stranded regions. We obtained similar results for the interaction of MARs with intact nuclear matrices from rat liver. A model in which the interaction of nuclear matrix proteins with single-stranded MAR regions serves to stabilize the transcriptionally active state of chromatin is discussed.Keywords
This publication has 46 references indexed in Scilit:
- NuMA: an unusually long coiled-coil related protein in the mammalian nucleus.The Journal of cell biology, 1992
- The nucleus: A black box being openedJournal of Cellular Biochemistry, 1991
- A matrix/scaffold attachment region binding protein: Identification, purification, and mode of bindingCell, 1991
- Torsional stress stabilizes extended base unpairing in suppressor sites flanking immunoglobulin heavy chain enhancerBiochemistry, 1990
- Lamins A and C bind and assemble at the surface of mitotic chromosomes.The Journal of cell biology, 1990
- Intermediate filaments: structure, assembly and molecular interactionsCurrent Opinion in Cell Biology, 1990
- Specific inhibition of DNA Binding to nuclear scaffolds and histone H1 by distamycinJournal of Molecular Biology, 1989
- SPXX, a frequent sequence motif in gene regulatory proteinsJournal of Molecular Biology, 1989
- Chromosomal loop anchorage sites appear to be evolutionarily conservedFEBS Letters, 1986
- Identification of a nuclear protein matrixBiochemical and Biophysical Research Communications, 1974