Lung use and development in Xenopus laevis tadpoles

Abstract
Shortly after hatching, Xenopus laevis tadpoles fill their lungs with air. We examined the role played by early lung use in these organisms, since they are able to respire with both their lungs and their gills. We investigated the effect on X. laevis development when the larvae were prevented from inflating their lungs, and whether early lung use influenced the size of the lungs or the tadpole's ability to metamorphose. Tadpoles that were denied access to air had lungs one-half the size of those of controls. This difference in lung size was too large to be explained merely by a stretching of the lung due to inflation. The longer tadpoles were denied access to air, the longer they took to metamorphose, and their probability of completing metamorphosis diminished. One tadpole raised throughout its larval life without access to air successfully metamorphosed but had abnormal, solidified lungs and an enlarged heart. Collectively, these experiments demonstrate that early lung use in tadpoles is important in determining both ultimate lung size and the probability of successfully metamorphosing. Lung use during early larval development in X. laevis is not absolutely necessary for survival through metamorphosis, but its absence severely handicaps growth.

This publication has 0 references indexed in Scilit: