Background: An understanding of the replication programme at the genome level will require the identification and characterization of origins of replication through large, contiguous regions of DNA. As a step toward this goal, origin efficiencies and replication times were determined for 10 ARSs spanning most of the 270 kilobase (kb) chromosome VI of Saccharomyces cerevisiae. Results: Chromosome VI shows a wide variation in the percentage of cell cycles in which different replication origins are utilized. Most of the origins are activated in only a fraction of cells, suggesting that the pattern of origin usage on chromosome VI varies greatly within the cell population. The replication times of fragments containing chromosome VI origins show a temporal pattern that has been recognized on other chromosomes—the telomeres replicate late in S phase, while the central region of the chromosome replicates early. Conclusions: As demonstrated here for chromosome VI, analysis of the direction of replication fork movement along a chromosome and determination of replication time by measuring a period of hemimethylation may provide an efficient means of surveying origin activity over large regions of the genome.