Drop deformation in polymer blends during uniaxial elongational flow

Abstract
The deformation in uniaxial elongational flow of dispersed droplets in immiscible molten polymer blends was studied for negligible interfacial tension and for viscosity ratio p = η(drop)/η(matrix) between 0.005 and 13, with an original method based on quenching elongated specimens. Although drop deformation (drop major axis over initial diameter) was in the range 1 < λd < 5, a good overall agreement was found with the small deformation Newtonian theory, which predicts that the drop versus matrix deformation ranges from 5/3 to 0 when p increases from 0 to infinity. The theoretical prediction that for p lower than 1, the droplet should deform more than the faraway surrounding matrix, with a limiting ratio of 5/3 at vanishing droplet viscosity, was experimentally verified.