Phorbol Ester Pretreatment Desensitizes the Inhibition of Ca2+Channels Induced by k-Opiate, ?2-Adrenergic, and Muscarinic Receptor Agonists

Abstract
Acute treatment of rat spinal cord-dorsal root ganglion cocultured neurons with 12-O-tetradecanoylphorbol 13-acetate (TPA), a known activator of protein kinase C, inhibited the dihydropyridine-sensitive voltage-dependent 45Ca2+ influx measured in these cells (IC50 of approximately 100 nM, 66% inhibition at 1 microM TPA). However, prolonged preincubation (24 h) of the cells with 100 nM TPA followed by extensive washing completely abolished, i.e., desensitized, the capacity of a second application of TPA to inhibit the activity of the voltage-dependent Ca2+ channels. Moreover, this treatment also abolished the inhibition of Ca2+ influx produced by kappa-opiate as well as by alpha 2-adrenergic and muscarinic receptor agonists. Substantial desensitization was already observed following a 1-h pretreatment with 100 nM TPA. In contrast to TPA, an inactive phorbol ester (4 beta-phorbol 13-acetate) did not affect the inhibition of the voltage-dependent Ca2+ influx by these receptor agonists. These results suggest that protein kinase C may have a role in the modulation of Ca2+ channels by kappa-opiate, alpha 2-adrenergic, and muscarinic receptor agonists.