Calcium/calmodulin‐dependent protein kinase type IV (CaMKIV) inhibits apoptosis induced by potassium deprivation in cerebellar granule neurons

Abstract
The neuroprotective mechanisms of the Ca2+/calmodulin kinase (CaMK) signaling pathway were studied in primary cerebellar neurons in vitro. When switched from depolarizing culture conditions HK (extracellular K+ 30 mM) to LK (K+ 5 mM), these neurons rapidly undergo nuclear fragmentation, a typical feature of apoptosis. We present evidence that blockade of L-type Ca2+ channels (nifedipine sensitive) but not N/P/Q-type Ca2+ channels (omega-conotoxin MVIIC sensitive) triggered apoptosis and CPP32/caspase-3-like activity. The entry into apoptosis was associated with a progressive caspase-3-dependent cleavage of CaMKIV, but not of CaMKII. CaMKIV function in neuronal apoptosis was further investigated by overexpression of CaMKIV mutants by gene transfer. A dominant-active CaMKIV mutant inhibited LK-induced apoptosis whereas a dominant-negative form induced apoptosis in HK, suggesting that CaMKIV exerts neuroprotective effects. The transcription factor CREB is a well-described nuclear target of CaMKIV in neurons....