In Vivo Vascular Engineering: Directed Migration of Smooth Muscle Cells to Limit Neointima
- 1 April 2002
- journal article
- research article
- Published by Mary Ann Liebert Inc in Tissue Engineering
- Vol. 8 (2) , 189-199
- https://doi.org/10.1089/107632702753724969
Abstract
Pathologic neointima formation requires directional smooth muscle cell (SMC) migration from media to intima. The very direction of SMC migration thus becomes a potential therapeutic target. Here, we hypothesize that proliferating SMC after injury can be redirected using engineered chemotactic gradients of elastin degradation to limit late pathologic neointima formation. Buffered bioerodible polymeric microspheres (MS) were constructed to provide 4-week sustained release of elastase, heat-killed elastase, or polymer only. In vitro elastase function and timecourse of release at 37°C, physiologic pH, and shear was determined. Curves revealed an initial bolus followed by sustained linear release for elastase MS, while controls exhibited baseline hydrolysis of substrate. We then employ controlled perivascular release of elastase after angioplasty to engineer modified in vivo gradients of elastin degradation in rabbit femoral arteries. NZW rabbits (n = 8 each) underwent balloon angioplasty of the common femoral artery followed by perivascular distribution of MS. Significant early perivascular elastin degradation resulted. Concurrently, proliferating SMC were guided peripherally (further from lumen) with treatment without significant changes in total proliferation or inflammation. At 28 days, treatment significantly reduces neointima by 42% relative to controls. These results confirm that directionally guiding SMC responses after injury achieves favorable arterial remodeling and limits development of pathologic neointima. Thus, a potential class of therapeutics and the paradigm of in vivo vascular engineering emerge from this work.Keywords
This publication has 32 references indexed in Scilit:
- Thrombomodulin Overexpression to Limit Neointima FormationCirculation, 2000
- Elastase and the Pathobiology of Unexplained Pulmonary HypertensionChest, 1998
- The molecular bases of restenosisProgress in Cardiovascular Diseases, 1997
- Remodeling of the coronary artery after vascular injuryProgress in Cardiovascular Diseases, 1997
- Migration of medial smooth muscle cells to the intima after balloon injury.Annals of the New York Academy of Sciences, 1997
- Elafin, a serine elastase inhibitor, attenuates post-cardiac transplant coronary arteriopathy and reduces myocardial necrosis in rabbits afer heterotopic cardiac transplantation.Journal of Clinical Investigation, 1996
- Gene therapy for vascular diseasesAtherosclerosis, 1995
- Arterial remodeling in atherosclerosis and restenosis: a vague concept of a distinct phenomenonAtherosclerosis, 1995
- Cell Biology of AtherosclerosisAnnual Review of Physiology, 1995
- Migration of smooth muscle and endothelial cells. Critical events in restenosis.Circulation, 1992