Bayesian Analysis of Interleaved Learning and Response Bias in Behavioral Experiments
- 1 March 2007
- journal article
- research article
- Published by American Physiological Society in Journal of Neurophysiology
- Vol. 97 (3) , 2516-2524
- https://doi.org/10.1152/jn.00946.2006
Abstract
Accurate characterizations of behavior during learning experiments are essential for understanding the neural bases of learning. Whereas learning experiments often give subjects multiple tasks to learn simultaneously, most analyze subject performance separately on each individual task. This analysis strategy ignores the true interleaved presentation order of the tasks and cannot distinguish learning behavior from response preferences that may represent a subject's biases or strategies. We present a Bayesian analysis of a state-space model for characterizing simultaneous learning of multiple tasks and for assessing behavioral biases in learning experiments with interleaved task presentations. Under the Bayesian analysis the posterior probability densities of the model parameters and the learning state are computed using Monte Carlo Markov Chain methods. Measures of learning, including the learning curve, the ideal observer curve, and the learning trial translate directly from our previous likelihood-based state-space model analyses. We compare the Bayesian and current likelihood–based approaches in the analysis of a simulated conditioned T-maze task and of an actual object–place association task. Modeling the interleaved learning feature of the experiments along with the animal's response sequences allows us to disambiguate actual learning from response biases. The implementation of the Bayesian analysis using the WinBUGS software provides an efficient way to test different models without developing a new algorithm for each model. The new state-space model and the Bayesian estimation procedure suggest an improved, computationally efficient approach for accurately characterizing learning in behavioral experiments.Keywords
This publication has 27 references indexed in Scilit:
- Rule Learning and Reward Contingency Are Associated with Dissociable Patterns of Dopamine Activation in the Rat Prefrontal Cortex, Nucleus Accumbens, and Dorsal StriatumJournal of Neuroscience, 2006
- Activity of striatal neurons reflects dynamic encoding and recoding of procedural memoriesNature, 2005
- Functional Magnetic Resonance Imaging Activity during the Gradual Acquisition and Expression of Paired-Associate MemoryJournal of Neuroscience, 2005
- Behavioral and Neurophysiological Analyses of Dynamic Learning ProcessesBehavioral and Cognitive Neuroscience Reviews, 2005
- Dissociable Retrosplenial and Hippocampal Contributions to Successful Formation of Survey RepresentationsJournal of Neuroscience, 2005
- Estimating a State-Space Model from Point Process ObservationsNeural Computation, 2003
- Acquisition and extinction in autoshaping.Psychological Review, 2002
- A Rasch Model for Detecting Learning While Solving an Intelligence TestApplied Psychological Measurement, 2000
- Psychophysically principled models of visual simple reaction time.Psychological Review, 1995
- Inference from Iterative Simulation Using Multiple SequencesStatistical Science, 1992