Realization of compact Lie algebras in Kähler manifolds
Preprint
- 15 July 1994
Abstract
The Berezin quantization on a simply connected homogeneous K\"{a}hler manifold, which is considered as a phase space for a dynamical system, enables a description of the quantal system in a (finite-dimensional) Hilbert space of holomorphic functions corresponding to generalized coherent states. The Lie algebra associated with the manifold symmetry group is given in terms of first-order differential operators. In the classical theory, the Lie algebra is represented by the momentum maps which are functions on the manifold, and the Lie product is the Poisson bracket given by the K\"{a}hler structure. The K\"{a}hler potentials are constructed for the manifolds related to all compact semi-simple Lie groups. The complex coordinates are introduced by means of the Borel method. The K\"{a}hler structure is obtained explicitly for any unitary group representation. The cocycle functions for the Lie algebra and the Killing vector fields on the manifold are also obtained.Keywords
All Related Versions
This publication has 0 references indexed in Scilit: