Abstract
This greenhouse study was conducted to determine the response of trickle-irrigated tomato (Lycopersicon esculentum cv. Dombo) to 6.4, 12.8, or 19.2 mmol N/L applied via the irrigation stream. The plants were grown in pots filled with 12 kg of soil. The amount of N applied in a total of 438 L of water per plant was 39.4, 78.8, or 118.2 g for the three N levels, respectively. The residual NO3-N concentration in the root volume was negligible with the 6.4 mmol N/L treatment, whereas, with the highest N level increased sharply for the first 16 weeks before reaching a value around 32 mmol N/L, which continued for the remainder of the experiment. With the highest N level there was also increase of soil solution EC, and NO3-N concentration in laminae and petioles was in excess. With the lowest N treatment, NO3-N concentration in laminae and petioles was at deficient levels. With 12.8 mmol N/L, NO3-N in petioles and laminae was at the sufficient level and yet no substantial increase of soil solution EC or NO3-N concentration occured, suggesting efficient use of N by crop. The highest yield (12.6 kg marketable fresh fruit per plant) was obtained with 12.8 mmol N/L due to increased number of fresh weight of fruits. It was concluded that 12.8 mmol N/L applied via the irrigation stream is adequate for high tomato yield without unduly raising soil salinity or wasting fertilizer N.