PDC activity and acetyl group accumulation in skeletal muscle during prolonged exercise

Abstract
Seven subjects cycled to exhaustion [58 +/- 7 (SE) min] at approximately 75% of their maximal oxygen uptake (VO2max). Needle biopsy samples were taken from the quadriceps femoris muscle at rest, after 3, 10, and 40 min of exercise, at exhaustion, and after 10 min of recovery. After 3 min of exercise, a nearly complete transformation of the pyruvate dehydrogenase complex (PDC) into active form had occurred and was maintained throughout the exercise period. The total in vitro activated PDC was unchanged during exercise. The muscle concentration of acetyl-CoA increased from a resting value of 8.4 +/- 1.0 to 31.6 +/- 3.3 mumol/kg dry wt at exhaustion and that of acetylcarnitine from 2.9 +/- 0.7 to 15.6 +/- 1.6 mmol/kg dry wt. This was accompanied by corresponding decreases in reduced CoA (CoASH) from 45.3 +/- 3.1 to 25.9 +/- 3.1 mumol/kg dry wt and in free carnitine from 18.8 +/- 0.7 to 5.7 +/- 0.5 mmol/kg dry wt. Acetyl group accumulation, in the form of acetyl-CoA and acetylcarnitine, was maintained throughout exercise to exhaustion while the glycogen content decreased by 90%. This suggests that availability of acetyl groups was not limiting to exercise performance despite the nearly total depletion of the glycogen store. The increased acetyl-CoA-to-CoASH ratio during exercise caused inhibition of neither the PDC transformation nor the calculated catalytic activity of active PDC.

This publication has 0 references indexed in Scilit: