The jet density exponent issue for the noise of heated subsonic jets
- 19 June 1974
- journal article
- research article
- Published by Cambridge University Press (CUP) in Journal of Fluid Mechanics
- Vol. 64 (3) , 611-622
- https://doi.org/10.1017/s0022112074002588
Abstract
The subject of the present study is the question of how the sound power of a jet of constant exit velocity would vary if the jet exit density were varied. Changes in jet exit density would inevitably be accompanied in a real experiment by changes in the speed of sound (temperature) in the jet, so that both effects must be considered simultaneously. The point of view advanced at the end of the study is that experimentally observed results in this area seem to admit an explanation based on how the radiative efficiency of moving acoustic sources is affected by the shrouding effect of a jet flow whose velocity, temperature and density differ from those of the ambient fluid. This change in efficiency is calculated with the aid of a simple model as follows. We determine the acoustic power output of a convected monopole source, simple harmonic in its own frame of reference, moving along the axis of a plug-flow round jet whose velocity is the same as that of the source. The jet is doubly infinite and the source is assumed to have an infinite lifetime. The density and temperature of the jet are allowed to differ from those of the ambient fluid though the specific-heat ratio of the jet fluid is assumed to be the same as that of the ambient. The requirement of equality of the static pressure inside and outside the jet then calls for a certain restraint on how the jet density and temperature vary. For a specific value of the jet exit velocity, the variation of acoustic power with the ratio of jet to ambient density along with a simple assumption on how the source strength varies with jet density are employed to deduce theoretically the ‘jet density exponent for jets which are subsonic with respect to the ambient speed of sound. The jet density exponent is found to depend both on the jet Mach number and even more strongly on a source frequency parameter. The theoretical results are compared with some experimental studies of this problem. Encouraging agreement is obtained both for the detailed observed effects on the power spectrum and the exponent for the overall power.Keywords
This publication has 14 references indexed in Scilit:
- Analysis of internally generated sound in continuous materials: 2. A critical review of the conceptual adequacy and physical scope of existing theories of aerodynamic noise, with special reference to supersonic jet noiseJournal of Sound and Vibration, 1972
- A moving source problem relevant to jet noiseJournal of Sound and Vibration, 1972
- On the noise sources of the unsuppressed high-speed jetJournal of Fluid Mechanics, 1971
- Measurements of subsonic jet noise and comparison with theoryJournal of Fluid Mechanics, 1971
- A wave-guide model for turbulent shear flowJournal of Fluid Mechanics, 1967
- The effect of mean velocity variations on jet noiseJournal of Fluid Mechanics, 1966
- Analysis of the stability of axisymmetric jetsJournal of Fluid Mechanics, 1962
- Concerning the Noise of Turbulent JetsThe Journal of the Acoustical Society of America, 1960
- On the generation of sound by supersonic turbulent shear layersJournal of Fluid Mechanics, 1960
- Energy Flux from an Acoustic Source Contained in a Moving Fluid Element and Its Relation to Jet NoiseThe Journal of the Acoustical Society of America, 1960