CRF receptor 1 regulates anxiety behavior via sensitization of 5-HT2 receptor signaling

Abstract
5-HT2 and corticotrophin releasing factor (CRF) receptors both regulate stress responses and anxiety behavior; however, potential cross-talk between the two pathways is poorly understood. Magalhaes et al. find that CRF receptor activation causes cell-surface recruitment of constitutively internalized 5-HT2 receptor and that this mechanism is relevant to anxiety-related behaviors. Stress and anxiety disorders are risk factors for depression and these behaviors are modulated by corticotrophin-releasing factor receptor 1 (CRFR1) and serotonin receptor (5-HT2R). However, the potential behavioral and cellular interaction between these two receptors is unclear. We found that pre-administration of corticotrophin-releasing factor (CRF) into the prefrontal cortex of mice enhanced 5-HT2R–mediated anxiety behaviors in response to 2,5-dimethoxy-4-iodoamphetamine. In both heterologous cell cultures and mouse cortical neurons, activation of CRFR1 also enhanced 5-HT2 receptor–mediated inositol phosphate formation. CRFR1-mediated increases in 5-HT2R signaling were dependent on receptor internalization and receptor recycling via rapid recycling endosomes, resulting in increased expression of 5-HT2R on the cell surface. Sensitization of 5-HT2R signaling by CRFR1 required intact PDZ domain–binding motifs at the end of the C-terminal tails of both receptor types. These data suggest a mechanism by which CRF, a peptide known to be released by stress, enhances anxiety-related behavior via sensitization of 5-HT2R signaling.