Patterns of molecular variation. I. Interspecific comparisons of electromorphs in the Drosophila mulleri complex

Abstract
The average mobility of electromorphs at an enzyme locus in a single population was defined as the weighted average mobility of the electromorphs in that population, where the electromorph frequencies are the weights. A derivative distance measure was defined whose taxonomic utility was determined in the Drosophila mulleri species complex. Most of the variation in this metric was at the interspecific level, primarily among clusters of sibling species. The electromorphs of some loci were equally and regularly spaced, while those of other loci were less regular in their spacing. Overall, these minor perturbations from regular spacing did not noticeably detract from the taxonomic utility of average mobility, and cluster analysis yielded the same taxonomic relationships as more conventional nonmolecular treatments. On the other hand, electromorph spacing may be related to functional constraints on the enzyme molecules. Some possible implications of the results for the modes of selection during evolution of the different enzymes are discussed.