A microRNA signature for a BMP2-induced osteoblast lineage commitment program
Top Cited Papers
- 16 September 2008
- journal article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 105 (37) , 13906-13911
- https://doi.org/10.1073/pnas.0804438105
Abstract
Bone morphogenetic proteins (BMPs) are potent morphogens that activate transcriptional programs for lineage determination. How BMP induction of a phenotype is coordinated with microRNAs (miRNAs) that inhibit biological pathways to control cell differentiation, remains unknown. Here, we show by profiling miRNAs during BMP2 induced osteogenesis of C2C12 mesenchymal cells, that 22 of 25 miRNAs which significantly changed in response to BMP2 are down-regulated. These miRNAs are each predicted to target components of multiple osteogenic pathways. We characterize two representative miRNAs and show that miR-133 directly targets Runx2, an early BMP response gene essential for bone formation, and miR-135 targets Smad5, a key transducer of the BMP2 osteogenic signal, controlled through their 3'UTR sequences. Both miRNAs functionally inhibit differentiation of osteoprogenitors by attenuating Runx2 and Smad5 pathways that synergistically contribute to bone formation. Although miR-133 is known to promote MEF-2-dependent myogenesis, we have identified a second complementary function to inhibit Runx2-mediated osteogenesis. Our key finding is that BMP2 controls bone cell determination by inducing miRNAs that target muscle genes but mainly by down-regulating multiple miRNAs that constitute an osteogenic program, thereby releasing from inhibition pathway components required for cell lineage commitment. Thus, our studies establish a mechanism for BMP morphogens to selectively induce a tissue-specific phenotype and suppress alternative lineages.Keywords
This publication has 35 references indexed in Scilit:
- Structural Coupling of Smad and Runx2 for Execution of the BMP2 Osteogenic SignalJournal of Biological Chemistry, 2008
- BMP signaling in dermal papilla cells is required for their hair follicle-inductive propertiesGenes & Development, 2008
- Dicer-dependent pathways regulate chondrocyte proliferation and differentiationProceedings of the National Academy of Sciences, 2008
- Oncogenes and CancerNew England Journal of Medicine, 2008
- Cyclic dermal BMP signalling regulates stem cell activation during hair regenerationNature, 2008
- MicroRNAs: powerful new regulators of heart disease and provocative therapeutic targetsJournal of Clinical Investigation, 2007
- HOXA10 Controls Osteoblastogenesis by Directly Activating Bone Regulatory and Phenotypic GenesMolecular and Cellular Biology, 2007
- Critical role of the extracellular signal–regulated kinase–MAPK pathway in osteoblast differentiation and skeletal developmentThe Journal of cell biology, 2007
- Myogenic factors that regulate expression of muscle-specific microRNAsProceedings of the National Academy of Sciences, 2006
- Mechanisms of gene silencing by double-stranded RNANature, 2004