The possible role of phospholipase A2 in cardiac membrane destabilization under calcium overload conditions

Abstract
The mechanism of spontaneous diastolic depolarizations induced by different Ca2+ overloading conditions (ouabain toxicity, calcium ionophore A23187, O-K, high Ca2+ solution) in mammalian working myocardium fibres was studied with conventional microelectrode technique and pharmacological approach. Antagonistic properties of antiphospholipase-A2 (PL A2)-active compounds (dexamethasone and indomethacin) were tested. Membrane oscillation in Ca2+ overload conditions were shown to be eliminated or largely protected by both anti-inflammatory agents. There was no influence of the compounds on electrical parameters and ion currents in intact mammalian and amphibian myocardium. The data obtained suggested that modulation of Ca2+-dependent PL A2 activity may contribute significantly to membrane destabilization due to Ca2+ overload of cardiac cells. An analogous membrane destabilizing action of exogenous PL A2 observed in Langendorff-perfused guinea pig heart is in favour of the hypothesis introduced.