Abstract
Enzymatic hydrolysis of the monoester phosphate group from coenzyme A (CoA) was studied in rat incisor ameloblasts by incubating specimens from glutaraldehyde-fixed teeth in a cytochemical medium prepared with acetyl-CoA as substrate and lead ions as capture agent for phosphate. Ameloblasts incubated for 1 hr at 37 degrees C and at pH 5.0 in this medium showed reaction product localized almost exclusively along the trans (mature) aspect of the Golgi apparatus within a network of small granules and interconnecting tubular channels that comprise the GERL system in this cell. Reaction product was otherwise seen in trace amounts only within some Golgi saccules, a few lysosomal dense bodies and, in rare instances, within an occasional focal area of the endoplasmic reticulum. No selective staining of the GERL system was seen in control ameloblasts incubated at either pH 7.2 or pH 9.0 with acetyl-CoA as substrate, or incubated at pH 5.0 with dephospho-CoA as substrate. Control experiments at pH 5.0 also revealed that reaction product selectively stained the GERL system in ameloblasts when other molecules resembling CoA were used as substrate (e.g., crotonyl-CoA, 3'-NADP+), but not when adenosine 3'-monophosphate (3'-AMP) was used as substrate. That is, ameloblasts incubated at pH 5.0 with 3'-AMP showed heavy deposits of reaction product at many sites throughout the cell, including most lysosomal dense bodies, the Golgi saccules, the GERL system, most secretory granules, the nucleus, and extensively throughout the endoplasmic reticulum. These findings suggest that the GERL system of ameloblasts contains a CoA-specific phosphatase activity that may function to convert CoA to dephospho-CoA at acid pH. Biochemical studies included with this investigation further indicate that CoA-Pase activity saturates at exceptionally low concentrations of substrate (KM = 30 microM CoA) compared to other acid-dependent phosphatases.