Experimental demonstration of a self-tracking 16-aperture receiver telescope array for laser intersatellite communications

Abstract
An adaptive receive telescope array with 16 apertures has been designed and breadboarded. With respect to size and performance, such a telescope array is well suited for use as receive antenna in a coherent interorbit laser link. The laboratory demonstrator, designed to operate at a wavelength of (lambda) equals 1.064 micrometers, is completely independent of any subsequent receiver and of the data modulation format employed. The telescope array is self-phasing, i.e. the main lobe of the antenna pattern automatically follows the direction of the incident wave. It thus performs non- mechanical fine tracking. Our experimental setup comprises a subtelescope array and a digital control unit employing digital signal processors. Besides inertia-free tracking, the control unit also checks and, if necessary, restores parallel alignment of the subtelescope axes at regular intervals. Space-worthy concepts have been applied wherever possible, although experiments have been performed only in the laboratory. Automatic fine-tracking is achieved within a single subtelescope's field of view (30 (mu) rad) in the frequency range up to 730 Hz.

This publication has 0 references indexed in Scilit: