A role for ERKII in synaptic pattern selectivity on the time‐scale of minutes
- 11 November 2004
- journal article
- research article
- Published by Wiley in European Journal of Neuroscience
- Vol. 20 (10) , 2671-2680
- https://doi.org/10.1111/j.1460-9568.2004.03725.x
Abstract
Stimulus reinforcement strengthens learning. Intervals between reinforcement affect both the kind of learning that occurs and the amount of learning. Stimuli spaced by a few minutes result in more effective learning than when massed together. There are several synaptic correlates of repeated stimuli, such as different kinds of plasticity and the amplitude of synaptic change. Here we study the role of signalling pathways in the synapse on this selectivity for spaced stimuli. Using the in vitro hippocampal slice technique we monitored long‐term potentiation (LTP) amplitude in CA1 for repeated 100‐Hz, 1‐s tetani. We observe the highest LTP levels when the inter‐tetanus interval is 5–10 min. We tested biochemical activity in the slice following the same stimuli, and found that extracellular signal‐regulated kinase type II (ERKII) but not CaMKII exhibits a peak at about 10 min. When calcium influx into the slice is buffered using AM‐ester calcium dyes, amplitude of the physiological and biochemical response is reduced, but the timing is not shifted. We have previously used computer simulations of synaptic signalling to predict such temporal tuning from signalling pathways. In the current study we consider feedback and feedforward models that exhibit temporal tuning consistent with our experiments. We find that a model incorporating post‐stimulus build‐up of PKM zeta acting upstream of mitogen‐activated protein kinase is sufficient to explain the observed temporal tuning. On the basis of these combined experimental and modelling results we propose that the dynamics of PKM activation and ERKII signalling may provide a mechanism for functionally important forms of synaptic pattern selectivity.Keywords
This publication has 57 references indexed in Scilit:
- Protein Kinase Mζ Synthesis from a Brain mRNA Encoding an Independent Protein Kinase Cζ Catalytic DomainJournal of Biological Chemistry, 2003
- Temporal spacing of synaptic stimulation critically modulates the dependence of LTP on cyclic AMP‐dependent protein kinaseHippocampus, 2003
- A Role for ERK MAP Kinase in Physiologic Temporal Integration in Hippocampal Area CA1Learning & Memory, 2003
- Postsynaptic Signaling and Plasticity MechanismsScience, 2002
- Protein phosphatase 1 is a molecular constraint on learning and memoryNature, 2002
- Review: Protein Kinase Signal Transduction Cascades in Mammalian Associative ConditioningThe Neuroscientist, 2002
- Protein kinase Mζ is necessary and sufficient for LTP maintenanceNature Neuroscience, 2002
- Context Shift and Protein Synthesis Inhibition Disrupt Long-Term Habituation after Spaced, but Not Massed, Training in the CrabChasmagnathusNeurobiology of Learning and Memory, 1999
- Emergent Properties of Networks of Biological Signaling PathwaysScience, 1999
- Theoretical mechanisms underlying the trial-spacing effect in Pavlovian fear conditioning.Journal of Experimental Psychology: Animal Behavior Processes, 1999