Entanglement between a Photon and a Quantum Well

Abstract
The lack of translational invariance perpendicular to the plane of a single quantum well causes equal probability for spontaneous emission to the left or right. Combining one emission path from the left and one from the right into a common detector leads to interference fringes for fundamentally indistinguishable paths corresponding to geometries where the same in-plane momentum is transferred to the quantum well. For all other paths, no interference is observed because of the entanglement between the photon and extended Bloch states of the many-body system. In multiple-quantum-well structures the interference can be controlled via the spacing between the wells.