MUC1 Induced by Epstein-Barr Virus Latent Membrane Protein 1 Causes Dissociation of the Cell-Matrix Interaction and Cellular Invasiveness via STAT Signaling

Abstract
Disruption of cellular adhesion is an essential pathobiologic step leading to tumor dissemination. Mucin 1 (MUC1) is a mucinous glycoprotein expressed at the surfaces of epithelial cells in many tissues and their carcinomas. MUC1 plays crucial roles in tumor invasion and metastasis, especially in opposing cell adhesion. We have shown that virus infection, specifically by the human tumor virus Epstein-Barr virus (EBV) induces a spectrum of cellular invasiveness and metastasis factors. Here we show that expression of MUC1 is increased in diverse latently EBV-infected cell lines that express latent membrane protein 1 (LMP1), the main viral oncoprotein, and that the level of MUC1 was suppressed by expression of a dominant-negative mutant of LMP1. Expression of LMP1 in EBV-negative nasopharyngeal cell lines induces expression of MUC1 through activation of the MUC1 promoter via binding of STAT1 and STAT3. Finally, LMP1 reduces cell adhesion ability, which is restored by inhibition of MUC1 expression with MUC1 small interfering RNA (siRNA). In addition, LMP1 increases cell invasiveness, which is suppressed by MUC1 siRNA. Thus, LMP1 induces MUC1, a factor important in an early step of detachment and release of tumor cells, which along with induction of other invasiveness and angiogenic factors may combine to act in a complex sequential process that culminates in metastasis of EBV-infected tumor cells.

This publication has 58 references indexed in Scilit: