Abstract
This present study investigates the anatomical realism of conventional stylized models of children by comparing organ dose conversion coefficients for the ORNL paediatric phantom series with those determined in the UF (University of Florida) voxel paediatric phantoms. The latter includes whole-body models of a 9 month male, 4 year female, 8 year female, 11 year male and a 14 year male. Of these phantoms, the 1 year, 5 year and 10 year ORNL phantoms, and 9 month male, 4 year female and 11 year male UF voxel phantoms were selected for side-by-side comparisons under idealized external photon irradiation. Organ absorbed dose per unit air kerma (Gy/Gy) for various radiosensitive organs and tissues were calculated for monoenergetic photons over the energy range of 15 keV to 10 MeV and for six irradiation geometries: anterior-posterior (AP), posterior-anterior (PA), right lateral (RLAT), left lateral (LLAT), rotational (ROT) and isotropic (ISO). Differences in organ dose conversion coefficients for the gonads, bone marrow, colon, lung and stomach, to which prominent tissue weighting factors are assigned, were depicted and analysed. Two major causes of observed differences were suggested: differences in organ shape and position and the differences in tissue shielding by overlying tissue regions within the phantoms. Significant discrepancies caused by anatomical differences between the two types of phantoms are also reported for several organs, and in particular, the thyroid and urinary bladder. The results of this study suggest that the paediatric series of ORNL phantoms also have less realistic internal organ and body anatomy and that dose conversion coefficients from these stylized phantoms should be re-evaluated using paediatric voxel phantoms.