Evaluating strategies for similarity search on the web

Abstract
Finding pages on the Web that are similar to a query page (Related Pages) is an important component of modern search engines. A variety of strategies have been proposed for answering Related Pages queries, but comparative evaluation by user studies is expensive, especially when large strategy spaces must be searched (e.g., when tuning parameters). We present a technique for automatically evaluating strategies using Web hierarchies, such as Open Directory, in place of user feedback. We apply this evaluation methodology to a mix of document representation strategies, including the use of text, anchor-text, and links. We discuss the relative advantages and disadvantages of the various approaches examined. Finally, we describe how to efficiently construct a similarity index out of our chosen strategies, and provide sample results from our index.

This publication has 7 references indexed in Scilit: