Dorsal and anal fin function in bluegill sunfishLepomis macrochirus: three-dimensional kinematics during propulsion and maneuvering
Open Access
- 15 July 2005
- journal article
- research article
- Published by The Company of Biologists in Journal of Experimental Biology
- Vol. 208 (14) , 2753-2763
- https://doi.org/10.1242/jeb.01706
Abstract
Dorsal and anal fins are median fins located above and below the centre of mass of fishes, each having a moment arm relative to the longitudinal axis. Understanding the kinematics of dorsal and anal fins may elucidate how these fins are used in concert to maintain and change fish body position and yet little is known about the functions of these fins. Using three synchronized high-speed cameras (500 frames s–1) we studied the three-dimensional kinematics of dorsal and anal fins during steady swimming (0.5–2.5 TL s–1, where TL=total length) and during slow speed maneuvers (0.5 TL s–1). By digitizing points along every other fin ray in the soft-rayed portion of the fins we were able to determine not only the movement of the fin surface but also the curvature of individual fin rays and the resulting fin surface shape. We found that dorsal and anal fins begin oscillating, in phase, at steady swimming speeds above 1.0 TL s–1 and that maximum lateral displacement of the trailing edge of the fins as well as fin area increase with increasing steady swimming speed. Differences in area, lateral displacement and moment arm between the dorsal and anal fin suggest that dorsal and anal fins produce balancing torques during steady swimming. During maneuvers, fin area is maximized and mean lateral excursion of both fins is greater than during steady swimming, with large variation among maneuvers. Fin surface shape changes dramatically during maneuvers. At any given point in time the spanwise (base to tip) curvature along fin rays can differ between adjacent rays, suggesting that fish have a high level of control over fin surface shape. Also, during maneuvers the whole surface of both dorsal and anal fins can be bent without individual fin rays exhibiting significant curvature.Keywords
This publication has 29 references indexed in Scilit:
- Maneuverability—General IssuesIEEE Journal of Oceanic Engineering, 2004
- Control of Posture, Depth, and Swimming Trajectories of FishesIntegrative and Comparative Biology, 2002
- The dorsal fin engine of the seahorse (Hippocampus sp.)Journal of Morphology, 2001
- Function of the Caudal Fin During Locomotion in Fishes: Kinematics, Flow Visualization, and Evolutionary PatternsAmerican Zoologist, 2000
- Functional design and burst-and-coast swimming in fishesCanadian Journal of Zoology, 1983
- Swimming in the electric eels and knifefishesCanadian Journal of Zoology, 1983
- Undulatory median fin propulsion of two teleosts with different modes of lifeCanadian Journal of Zoology, 1980
- On seahorse locomotionJournal of the Marine Biological Association of the United Kingdom, 1976
- Studies on mechanisms of joint and bone formation in the skeleton rays of fish finsDevelopmental Biology, 1962
- AN ANALYSIS OF THE LOCOMOTION OF THE SEAHORSE, HIPPOCAMPUS, BY MEANS OF HIGH SPEED CINEMATOGRAPHYAnnals of the New York Academy of Sciences, 1942