Studies of vibrating atomic force microscope cantilevers in liquid

Abstract
An atomic force microscope (AFM) design providing a focused spot of order 7 μm in diameter was used to analyze the motion of vibrating cantilevers in liquid. Picking an operating frequency for tapping mode AFM operation in liquid is complex because there is typically a large number of sharp peaks in the response spectrum of cantilever slope amplitude versus drive frequency. The response spectrum was found to be a product of the cantilever’s broad thermal noise spectrum and an underlying fluid drive spectrum containing the sharp peaks. The geometrical shape of transverse cantilever motion was qualitatively independent of the fluid drive spectrum and could be approximately reproduced by a simple theoretical model. The measurements performed give new insights into the behavior of cantilevers during tapping mode AFM operation in liquid.