Abstract
P′-brane solutions to rank p+1 composite antisymmetric tensor field theories of the kind developed by Guendelman, Nissimov and Pacheva are found when the dimensionality of space–time is D=(p+1)+(p′+1). These field theories possess an infinite-dimensional group of global Noether symmetries, that of volume-preserving diffeomorphisms of the target space of the scalar primitive field constituents. Crucial in the construction of p′ brane solutions are the duality transformations of the fields and the local gauge field theory formulation of extended objects given by Aurilia, Spallucci and Smailagic. Field equations are rotated into Bianchi identities after the duality transformation is performed and the Clebsch potentials associated with the Hamilton–Jacobi formulation of the p′ brane can be identified with the duals of the original scalar primitive constituents. Explicit examples are worked out the analog of S and T duality symmetry are discussed. Different types of Kalb–Ramond actions are given and a particular covariant action is presented which bears a direct relation to the light cone gauge p-brane action.

This publication has 16 references indexed in Scilit: