Effects of Prenatal Ethanol and Long‐Chain n‐3 Fatty Acid Supplementation on Development in Mice. 1. Body and Brain Growth, Sensorimotor Development, and Water T‐Maze Reversal Learning

Abstract
Pregnant mice were fed equivalent daily amounts of a liquid diet containing 25% (kcal) ethanol, or with maltose dextrin substituted isocalorically for ethanol. In addition, the diet contained 20% oil; this was either of two mixtures, one comprised of predominantly n-6 (18:2n-6) fatty acids, and the other containing an equivalent amount of n-6, but supplemented with a source of long chain n-3 (20:5n-3, 22:6n-3) fatty acids. An additional control group was fed lab chow ad libitum. The treatment was implemented from day 7 to 17 of gestation, whereafter all groups were fed lab chow. Ethanol decreased maternal weight gain and pup body and brain weight, it also retarded both sensory and motor development in the pups and impeded reversal learning in a water maze. The n-3 supplementation lowered maternal blood alcohol concentration, but counteracted only some of the effects of ethanol, by increasing maternal weight gain and pup body weight, and also by enhancing sensory development in the pups. Such effects were additive, in that they were also present in the maltose-dextrin control group. These findings suggest that n-3 supplementation may ameliorate some of the effects of ethanol on neurobehavioral development, but the magnitude of the effect appears to be small.