Boundary conditions for integrable equations
- 21 May 1997
- journal article
- Published by IOP Publishing in Journal of Physics A: General Physics
- Vol. 30 (10) , 3505-3513
- https://doi.org/10.1088/0305-4470/30/10/025
Abstract
The problem of constructing boundary conditions for nonlinear equations compatible with higher symmetries is considered. In particular, this problem is discussed for the sine - Gordon, Jiber - Shabat, Liouville and KdV equations. New results are obtained for the last two ones. The boundary condition for the KdV contains two arbitrary constants. The substitution maps it onto the boundary condition with linear dependence on t for the potentiated KdV.Keywords
This publication has 9 references indexed in Scilit:
- Краевая задача для уравнения КдФ на полуосиTeoreticheskaya I Matematicheskaya Fizika, 1997
- Интегрируемые граничные условия для многокомпонентных уравнений БюргерсаMatematicheskie Zametki, 1996
- Integrable boundary conditions for the Toda latticeJournal of Physics A: General Physics, 1995
- Boundary value problems for integrable equations compatible with the symmetry algebraJournal of Mathematical Physics, 1995
- Variable coefficient third order Korteweg–de Vries type of equationsJournal of Mathematical Physics, 1995
- Boundary value problems compatible with symmetriesPhysics Letters A, 1994
- Symmetries of boundary problemsPhysics Letters A, 1993
- Symmetries and IntegrabilityStudies in Applied Mathematics, 1987
- A symmetry approach to exactly solvable evolution equationsJournal of Mathematical Physics, 1980