Abstract
Skill in ensemble-mean dynamical seasonal climate hindcasts with a coupled land–atmosphere model and specified observed sea surface temperature is compared to that for long multidecade integrations of the same model where the initial conditions are far removed from the seasons of validation. The evaluations are performed for surface temperature and compared among all seasons. Skill is found to be higher in the seasonal simulations than in the multidecadal integrations except during boreal winter. The higher skill is prominent even beyond the first month when the direct influence of the atmospheric initial state elevates model skill. Skill is generally found to be lowest during the winter season for the dynamical seasonal forecasts. This is in contrast to the multiyear integrations, which show some of the highest skill during winter—as high as the dynamical seasonal forecasts. The reason for the differences in skill during the nonwinter months is attributed to the severe climate drift in the long ... Abstract Skill in ensemble-mean dynamical seasonal climate hindcasts with a coupled land–atmosphere model and specified observed sea surface temperature is compared to that for long multidecade integrations of the same model where the initial conditions are far removed from the seasons of validation. The evaluations are performed for surface temperature and compared among all seasons. Skill is found to be higher in the seasonal simulations than in the multidecadal integrations except during boreal winter. The higher skill is prominent even beyond the first month when the direct influence of the atmospheric initial state elevates model skill. Skill is generally found to be lowest during the winter season for the dynamical seasonal forecasts. This is in contrast to the multiyear integrations, which show some of the highest skill during winter—as high as the dynamical seasonal forecasts. The reason for the differences in skill during the nonwinter months is attributed to the severe climate drift in the long ...