Regulation of 5-Aminolevulinic Acid Synthesis in Developing Chloroplasts

Abstract
5-Aminolevulinic acid synthesis in isolated, intact, developing chloroplasts from greening cucumber (Cucumis sativus) cotyledons was inhibited by broken chloroplast fragments. It was shown that the inhibitory constituent was associated with the thylakoid membrane system. The inhibitor was resistant to boiling, was not a form of ribonuclease, and did not inhibit Mg-chelatase, indicating that massive organelle destruction was not involved. The inhibitor was also found in etioplast and mature chloroplasts; and it was found in barley as well as cucumber. 5-Aminolevulinate synthesis in the dark with exogenous ATP and NADPH, or in the light without added cofactors, were inhibited approximately equally. In the dark, 5-aminolevulinate synthesis and protochlorophyllide synthesis from glutamate were inhibited to about equal extent. The inhibition was decreased when the membranes were washed with aqueous acetone prior to incubation. The inhibition by the unknown factor was compared to the inhibition by gabaculine, 4-amino-5-hexynoic acid, protoheme, and glutathione. The unknown inhibitor appeared to have a number of similarities with protoheme.