Abstract
Assuming that the formation of interstitial compounds is accompanied by creation of excess holes in the otherwise full band of graphite, it is shown that a linear energy‐momentum relation at the Brillouin zone corners is incapable of explaining the decrease of the electric resistance with oxidation. It appears that for a more general model the decrease in relative resistance should be independent of temperature for large oxidations if suitable corrections for the initial conditions are made. Data for polycrystalline graphite corrected for the existence of an energy gap and of excess holes in the untreated material give curves which converge for higher oxidation with the curve for natural graphite. Discussion of the low temperature properties of graphite leads to the conclusion that large graphite crystals possess slightly overlapping zones.