Electron-Nuclear Coupling to the Proximal Histidine in Oxycobalt-Substituted Distal Histidine Mutants of Human Myoglobin

Abstract
Electron spin echo envelope modulation (ESEEM) spectroscopy was used to investigate electron-nuclear coupling to the N epsilon of the proximal histidine (F8, His93) imidazole in oxyCo(II)-substituted distal histidine (E7, His64) mutants (His-->Leu, His-->Val, His-->Gly, His-->Gln) and recombinant wild-type human myoglobins (Mbs). Nuclear hyperfine and nuclear quadrupole coupling constants decrease in the order: H64L > H64V > or = H64G approximately H64Q > wild-type. The differences in couplings found for the four mutant proteins are correlated with the differences in polarity of the E7 side chain. On the basis of the relative orientation of the nuclear quadrupole and g tensors, obtained by computer simulation of ESEEM spectra, the Co-O-O bond angle of H64G and H64Q appears to be similar to that of oxyCo sperm whale Mb (and possibly wild-type human Mb) at room temperature [Hori et al. (1982) J. Biol. Chem. 257, 3636], while that in H64V and H64L is more obtuse. ESEEM measurements in D2O demonstrate the presence of a hydrogen bond between the distal histidine and bound O2 in the wild-type protein, as was found in oxyCo sperm whale and horse Mbs [Lee et al. (1992) Biochemistry 31, 7274]. This hydrogen bond leads to a reduction in the N epsilon coupling in the wild-type protein as compared to that in the E7 mutants. No hyperfine-coupled deuterons were found in any of the mutants, and therefore, the proposed hydrogen bond between bound O2 and the distal glutamine in H64Q [Ikeda-Saito et al. (1991) J. Biol. Chem. 266, 23641] could not be substantiated.

This publication has 0 references indexed in Scilit: