Pulse repetition frequency multiplication via intracavity optical filtering in AM mode-locked fiber ring lasers

Abstract
We demonstrate pulse repetition frequency multiplication in AM mode-locked fiber ring lasers using optical filtering realized via an intracavity fiber Fabry-Perot filter (FFP) and show that the generated optical pulses are highly stable in amplitude noise and timing jitter. A 3.477-GHz optical pulse train is generated using a modulation signal of 869.284 MHz, a fourth subharmonic multiple of the 3.48-GHz free spectral range of FFP. The generated optical pulses exhibit a high degree of pulse stability in terms of a large suppression of supermode noise, a low amplitude noise of 0.93 %, and a timing jitter of 1.2 ps.