A mobile high-field magnetic resonance system for neurosurgery

Abstract
Object. The authors' goal was to place a mobile, 1.5-tesla magnetic resonance (MR) imaging system into a neurosurgical operating room without adversely affecting established neurosurgical management. The system would help to plan accurate surgical corridors, confirm the accomplishment of operative objectives, and detect acute complications such as hemorrhage or ischemia.Methods. The authors used an actively shielded 1.5-tesla magnet, together with 15 mtesla/m gradients, MR console computers, gradient amplifiers, a titanium, hydraulic-controlled operating table, and a radiofrequency coil that can be disassembled. The magnet is moved to and from the surgical field by using overhead crane technology. To date, the system has provided unfettered access in 46 neurosurgical patients.In all patients, high-definition T1- and/or T2-weighted images were rapidly and reproducibly acquired at various stages of the surgical procedures. Eleven patients underwent craniotomy that was optimized after preincision imaging. In four patients who harbored subtotally resected tumor, intraoperative MR imaging aided the surgeon in removing the remaining tumor. Interestingly, the intraoperative administration of gadolinium demonstrated a dynamic expansion of enhancement beyond the preoperative contrast contour in patients with malignant glioma. These zones of new enhancement proved, on examination of biopsy samples, to be tumor.Conclusions. The authors have demonstrated that high-quality MR images can be obtained in the operating room within reasonable time constraints. Procedures can be conducted without compromising or altering traditional neurosurgical, nursing, or anesthetic techniques. It is feasible that within the next decade intraoperative MR imaging may become the standard of care in neurosurgery.