Electromotive Force and Large-Scale Magnetic Dynamo in a Turbulent Flow with a Mean Shear
Abstract
An effect of sheared large-scale motions on a mean electromotive force in a nonrotating turbulent flow of a conducting fluid is studied. It is demonstrated that in a homogeneous divergence-free turbulent flow the alpha-effect does not exist, however a mean magnetic field can be generated even in a nonrotating turbulence with an imposed mean velocity shear due to a new ''shear-current" effect. A contribution to the electromotive force related with the symmetric parts of the gradient tensor of the mean magnetic field (the kappa-effect) is found in a nonrotating turbulent flows with a mean shear. The kappa-effect and turbulent magnetic diffusion reduce the growth rate of the mean magnetic field. It is shown that a mean magnetic field can be generated when the exponent of the energy spectrum of the background turbulence (without the mean velocity shear) is less than 2. Astrophysical applications of the obtained results are discussed.Keywords
All Related Versions
This publication has 0 references indexed in Scilit: