From Infall to Rotation around Young Stellar Objects: A Transitional Phase with a 2000 AU Radius Contracting Disk?
- 1 June 2001
- journal article
- Published by American Astronomical Society in The Astrophysical Journal
- Vol. 553 (2) , 618-632
- https://doi.org/10.1086/320972
Abstract
Evidence for a transitional stage in the formation of a low-mass star is reported, intermediate between the fully embedded and the T Tauri phases. Millimeter aperture synthesis observations in the HCO+ J=1-0 and 3-2, HCN 1-0, 13CO 1-0, and C18O 1-0 transitions reveal distinctly different velocity fields around two embedded, low-mass young stellar objects. The 0.6 M(sun) of material around TMC 1 (IRAS 04381+2517) closely follows inside-out collapse in the presence of a small amount of rotation (~3 km/s/pc), while L1489 IRS (IRAS 04016+2610) is surrounded by a 2000 AU radius, flared disk containing 0.02 M(sun). This disk shows Keplerian rotation around a ~0.65 M(sun) star and infall at 1.3 (r/100 AU)^-0.5 km/s, or, equivalently, sub-Keplerian motions around a central object between 0.65 and 1.4 M(sun). Its density is characterized by a radial power law and an exponential vertical scale height. The different relative importance of infall and rotation around these two objects suggests that rotationally supported structures grow from collapsing envelopes over a few times 10^5 yr to sizes of a few thousand AU, and then decrease over a few times 10^4 yr to several hundred AU typical for T Tauri disks. In this scenario, L1489 IRS represents a transitional phase between embedded YSOs and T Tauri stars with disks. The expected duration of this phase of ~5% of the embedded stage is consistent with the current lack of other known objects like L1489 IRS. Alternative explanations cannot explain L1489 IRS's large disk, such as formation from a cloud core with an unusually large velocity gradient or a binary companion that prevents mass accretion onto small scales. It follows that the transfer and dissipation of angular momentum is key to understanding the formation of disks from infalling envelopes.Comment: Accepted ApJ. 33 pages, including 10 B/W figures and 1 color figure. Uses AASTeKeywords
All Related Versions
This publication has 37 references indexed in Scilit:
- The Structure of Protostellar Envelopes Derived from Submillimeter Continuum ImagesThe Astrophysical Journal, 2000
- Protostars and Planets IVIcarus, 2000
- Circumstellar kinematics and the measurement of stellar mass for the protostars TMC1 and TMC1AMonthly Notices of the Royal Astronomical Society, 1999
- Spectral Energy Distributions of T Tauri Stars with Passive Circumstellar DisksThe Astrophysical Journal, 1997
- Chemical Evolution in Preprotostellar and Protostellar CoresThe Astrophysical Journal, 1997
- Circumstellar disks and the search for neighbouring planetary systemsNature, 1996
- Bolometric temperature and young stars in the Taurus and Ophiuchus complexesThe Astrophysical Journal, 1995
- Magnetic braking, ambipolar diffusion, and the formation of cloud cores and protostars. 1: Axisymmetric solutionsThe Astrophysical Journal, 1994
- Collapse of Magnetized Molecular Cloud Cores. I. Semianalytical SolutionThe Astrophysical Journal, 1993
- A survey for circumstellar disks around young stellar objectsThe Astronomical Journal, 1990