Electronic structure and spin polarization of Mn-containing dilute magnetic III-V semiconductors
- 3 December 2001
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review B
- Vol. 64 (24) , 245205
- https://doi.org/10.1103/physrevb.64.245205
Abstract
We present ab initio density-functional calculations for the electronic structure of the dilute magnetic semiconductors and with a realistic We find that the introduction of Mn perturbs the position of the nearest As atoms, but does not break the tetrahedral symmetry. Neither material is found to be strictly half metallic. However, in both materials the Mn content results in a majority-spin valence-band maximum that is eV above the minority-spin valence-band maximum. This large valence-band split is primarily due to the hybridization of As and Mn orbitals. It results in a significant energy range where holes have a well-defined spin. The effective masses of holes in this range are found to be comparable to those of GaAs and InAs. Hence, in an ideal, disorder-free situation, spin-polarized transport may be explained by conventional transport in the context of a simple band picture. This leads to a theoretical limit of 100% spin injection from these materials. Attaining this limit in a sufficiently ordered material also requires a careful “engineering” of the Fermi-level position and a sufficiently low temperature.
Keywords
This publication has 24 references indexed in Scilit:
- Ground state of half-metallic zinc-blende MnAsPhysical Review B, 2000
- Electrical spin injection in a ferromagnetic semiconductor heterostructureNature, 1999
- Magnetic Circular Dichroism Studies of Carrier-Induced Ferromagnetism inPhysical Review Letters, 1999
- Antiferromagneticexchange in ferromagneticepilayersPhysical Review B, 1999
- Coupled quantum dots as quantum gatesPhysical Review B, 1999
- MagnetoelectronicsScience, 1998
- Making Nonmagnetic Semiconductors FerromagneticScience, 1998
- Band structures of zinc-blende-type MnAs and (MnAs)1(GaAs)1 superlatticeJournal of Magnetism and Magnetic Materials, 1998
- Accurate and simple analytic representation of the electron-gas correlation energyPhysical Review B, 1992
- Electronic analog of the electro-optic modulatorApplied Physics Letters, 1990